初中丨初一上册数学考试必考的21个知识点学霸早已烂熟于心
栏目:行业动态 来源:竞技宝测速网站 作者:竞技宝测速 发布时间:2022-07-04 07:57:05
初中丨初一上册数学考试必考的21个知识点学霸早已烂熟于心

  今天优途小助手给大家分享初一数学上学期期末考试必考的22个知识点和注意事项,大家趁着暑假可以对照预习或复习一下!

  数轴上的点:所有的有理数都可以用数轴上的点表示,但数轴上的点不都表示有理数.(一般取右方向为正方向,数轴上的点对应任意实数,包括无理数)

  相反数的意义:掌握相反数是成对出现的,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等。

  多重符号的化简:与“+”个数无关,有奇数个“﹣”号结果为负,有偶数个“﹣”号,结果为正。

  规律方法总结:求一个数的相反数的方法就是在这个数的前边添加“﹣”,如a的相反数是﹣a,m+n的相反数是﹣(m+n),这时m+n是一个整体,在整体前面添负号时,要用小括号。

  ②绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数.

  比较有理数的大小可以利用数轴,他们从左到有的顺序,即从大到小的顺序(在数轴上表示的两个有理数,右边的数总比左边的数大);也可以利用数的性质比较异号两数及0的大小,利用绝对值比较两个负数的大小。

  (1)法则比较:正数都大于0,负数都小于0,正数大于一切负数.两个负数比较大小,绝对值大的反而小.

  ②将有理数转化为加法时,要同时改变两个符号:一是运算符号(减号变加号); 二是减数的性质符号(减数变相反数);

  注意:在有理数减法运算时,被减数与减数的位置不能随意交换;因为减法没有交换律。

  减法法则不能与加法法则类比,0加任何数都不变,0减任何数应依法则进行计算。

  ①几个不等于0的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负;当负因数有偶数个时,积为正.

  有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算。

  (1)转化法:一是将除法转化为乘法,二是将乘方转化为乘法,三是在乘除混合运算中,通常将小数转化为分数进行约分计算。

  (2)凑整法:在加减混合运算中,通常将和为零的两个数,分母相同的两个数,和为整数的两个数,乘积为整数的两个数分别结合为一组求解。

  (3)分拆法:先将带分数分拆成一个整数与一个真分数的和的形式,然后进行计算。

  (4)巧用运算律:在计算中巧妙运用加法运算律或乘法运算律往往使计算更简便。

  科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,n是正整数,这种记数法叫做科学记数法。(科学记数法形式:a×10n,其中1≤a10,n为正整数)(n为次方)

  ①科学记数法中a的要求和10的指数n的表示规律为关键,由于10的指数比原来的整数位数少1;按此规律,先数一下原数的整数位数,即可求出10的指数n。

  ②记数法要求是大于10的数可用科学记数法表示,实质上绝对值大于10的负数同样可用此法表示,只是前面多一个负号。

  (1)代数式的值:用数值代替代数式里的字母,计算后所得的结果叫做代数式的值。

  (2)代数式的求值:求代数式的值可以直接代入、计算。如果给出的代数式可以化简,要先化简再求值。

  首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解。探寻规律要认真观察、仔细思考,善用联想来解决这类问题。

  去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化。

  解一元一次方程时先观察方程的形式和特点,若有分母一般先去分母;若既有分母又有括号,且括号外的项在乘括号内各项后能消去分母,就先去括号。

  在解类似于“ax+bx=c”的方程时,将方程左边,按合并同类项的方法并为一项即(a+b)x=c。

  将ax=b系数化为1时,要准确计算,一弄清求x时,方程两边除以的是a还是b,尤其a为分数时;二要准确判断符号,a、b同号x为正,a、b异号x为负。

  (4)工程问题(①工作量=人均效率×人数×时间;②如果一件工作分几个阶段完成,那么各阶段的工作量的和=工作总量);

  (10)水流航行问题(顺水速度=静水速度+水流速度;逆水速度=静水速度﹣水流速度)。

  首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答。

  (2)设:设未知数(x),根据实际情况,可设直接未知数(问什么设什么),也可设间接未知数。

  (1)对于此类问题一般方法是用纸按图的样子折叠后可以解决,或是在对展开图理解的基础上直接想象。

  (2)从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键。

  (3)正方体的展开图有11种情况,分析平面展开图的各种情况后再认真确定哪两个面的对面。

  ①直线:用一个小写字母表示,如:直线l,或用两个大写字母(直线上的)表示,如直线AB.

  ②射线:是直线的一部分,用一个小写字母表示,如:射线l;用两个大写字母表示,端点在前,如:射线OA.注意:用两个字母表示时,端点的字母放在前边.

  ③线段:线段是直线的一部分,用一个小写字母表示,如线段a;用两个表示端点的字母表示,如:线段AB(或线段BA)。

  连接两点间的线段的长度叫两点间的距离。平面上任意两点间都有一定距离,它指的是连接这两点的线段的长度,学习此概念时,注意强调最后的两个字“长度”,也就是说,它是一个量,有大小,区别于线段,线段是图形.线段的长度才是两点的距离。可以说画线段,但不能说画距离。

  有公共端点是两条射线组成的图形叫做角,其中这个公共端点是角的顶点,这两条射线是角的两条边。角的表示方法:

  角可以用一个大写字母表示,也可以用三个大写字母表示。其中顶点字母要写在中间,唯有在顶点处只有一个角的情况,才可用顶点处的一个字母来记这个角,否则分不清这个字母究竟表示哪个角.角还可以用一个希腊字母(如∠α,∠β,∠γ、…)表示,或用阿拉伯数字(∠1,∠2…)表示。平角、周角:

  角也可以看作是由一条射线绕它的端点旋转而形成的图形,当始边与终边成一条直线时形成平角,当始 边与终边旋转重合时,形成周角。角的度量:

  度、分、秒是常用的角的度量单位。1度=60分,即1°=60′,1分=60秒,即1′=60″。19.角平分线的定义

  (1)由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状。

  (2)由物体的三视图想象几何体的形状是有一定难度的,可以从以下途径进行分析:

  往期推荐录取丨北大、清华、复旦等校2021高考各省提前批录取分数线年高考未被录取会显示什么?录取丨2021提前批投档分出炉!部分院校还有缺额!

  因第三方原因,无意中侵犯了您原创版权,请联系,马上删除!谢谢!返回搜狐,查看更多